Графични страници
PDF файл
ePub

presents us with a new discovery. The watch is found, in the course of its movement, to produce another watch, similar to itself; and not only so, but we perceive in it a system or organization, separately calculated for that purpose. What effect

would this discovery have, or ought it to have, upon our former inference? What, as hath already been said, but to increase, beyond measure, our admiration of the skill, which had been employed in the formation of such a machine? Or shall it, instead of this, all at once turn us round to an opposite conclusion, viz. that no art or skill whatever has been concerned in the business, although all other evidences of art and skill remain as they were, and this last and supreme piece of art be now added to the rest? Can this be maintained without absurdity? Yet this is atheism.

CHAPTER III.

APPLICATION OF THE ARGUMENT.

THIS is atheism: for every indication of contrivance, every manifestation of design, which existed in the watch, exists in the works of nature; with the difference, on the side of nature, of being greater and more, and that in a degree which exceeds all computation. I mean that the contrivances of nature surpass the contrivances of art, in the complexity, subtilty, and curiosity of the mechanism; and still more, if possible, do they go beyond them in number and variety; yet, in a multitude of cases, are not less evidently mechanical, not less evidently contrivances, not less evidently accommodated to their end, or suited to their office, than are the most perfect productions of human ingenuity.

I know no better method of introducing so large a subject, than that of comparing a single thing with a single thing: an eye, for example, with a telescope. As far as the examination of the instrument goes, there is precisely the same proof that the eye was made for vision, as there is that the telescope was made for assisting it. They are made upon the same principles; both being adjusted to the laws by which the transmission and refraction of rays of light are regulated. I speak not of the origin of the laws themselves; but such laws being fixed, the construction, in both cases, is adapted to them. For instance; these

laws require, in order to produce the same effect, that the rays of light, in passing from water into the eye, should be refracted by a more convex surface, than when it passes out of air into the eye. Accordingly we find that the eye of a fish, in that part of it called the crystalline lens, is much rounder than the eye of terrestrial animals. What plainer manifestation of design can there be than this difference? What could a mathematical instrument-maker have done more to shew his knowledge of his principle, his application of that knowledge, his suiting of his means to his end; I will not say to display the compass or excellence of his skill and art, for in these all comparison is indecorous, but to testify counsel, choice, consideration, purpose?

To some it may appear a difference sufficient to destroy all similitude between the eye and the telescope, that the one is a perceiving organ, the other an unperceiving instrument. The fact is, that they are both instruments. And, as to the mechanism, at least as to mechanism being employed, and even as to the kind of it, this circumstance varies not the analogy at all. For observe, what the constitution of the eye is. It is necessary, in order to produce distinct vision, that an image or picture of the object be formed at the bottom of the eye. Whence this necessity arises, or how the picture is connected with the sensation, or contributes to it, it may be difficult, nay, we will confess, if you please, impossible for us to search out. But the present question is not concerned in the inquiry. It may be true, that, in this, and in other instances, we trace mechanical contrivance a certain way; and that then we come to something which is not mechanical, or which is inscrutable. But this affects not the certainty of our investigation, as far as we have gone. The difference between an animal and an automatic statue consists in this,-that, in the animal, we trace the mechanism to a certain point, and then we are stopped; either the mechanism becoming too subtile for our discernment, or something else beside the known laws of mechanism taking place; whereas, in the automaton, for the comparatively few motions of which it is capable, we trace the mechanism throughout. But, up to the limit, the reasoning is as clear and certain in the one case, as in the other. In the example before us, it is a matter of certainty, because it is a matter which experience and observation demonstrate, that the formation of an image at the bottom of the eye is necessary to perfect vision. The image it

self can be shown. Whatever affects the distinctness of the image, affects the distinctness of the vision. The formation then of such an image being necessary (no matter how) to the sense of sight, and to the exercise of that sense, the apparatus by which it is formed is constructed and put together, not only with infinitely more art, but upon the self-same principles of art, as in the telescope or the camera-obscura. The perception arising from the image may be laid out of the question; for the production of the image, these are instruments of the same kind. The end is the same; the means are the same. The purpose

in both is alike; the contrivance for accomplishing that purpose is in both alike. The lenses of the telescopes, and the humours of the eye, bear a complete resemblance to one another, in their figure, their position, and in their power over the rays of light, viz. in bringing each pencil to a point at the right distance from the lens; namely, in the eye, at the exact place where the membrane is spread to receive it. How is it possible, under circumstances of such close affinity, and under the operation of equal evidence, to exclude contrivance from the one; yet to acknowledge the proof of contrivance having been employed, as the plainest and clearest of all propositions, in the other?

The resemblance between the two cases is still more accurate, and obtains in more points than we have yet represented, or than we are, on the first view of the subject, aware of. In dioptric telescopes there is an imperfection of this nature. Pencils of light, in passing through glass lenses, are separated into different colours, thereby tinging the object, especially the edges of it, as if it were viewed through a prism. To correct this inconvenience, had been long a desideratum in the art. At last it came into the mind of a sagacious optician, to inquire how this matter was managed in the eye; in which, there was exactly the same difficulty to contend with, as in the telescope. His observation taught him, that in the eye, the evil was cured by combining lenses composed of different substances, i. e. of substances which possessed different refracting powers. Our artist borrowed thence his hint; and produced a correction of the defect by imitating, in glasses made from different materials, the effects of the different humours through which the rays of light pass before they reach the bottom of the eye. Could this be in the eye without purpose, which suggested to the optician the only effectual means of attaining that purpose?

But farther; there are other points, not so much perhaps of

strict resemblance between the two, as of superiority of the eye over the telescope; yet of a superiority which, being founded in the laws that regulate both, may furnish topics of fair and just comparison. Two things were wanted to the eye, which were not wanted (at least in the same degree) to the telescope; and these were the adaptation of the organ, first, to different degrees of light; and secondly, to the vast diversity of distance at which objects are viewed by the naked eye, viz. from a few inches to as many miles. These difficulties present not themselves to the maker of the telescope. He wants all the light he can get; and he never directs his instrument to objects near at hand. In the eye, both these cases were to be provided for; and for the purpose of providing for them, a subtile and appropriate mechanism is introduced.

I. In order to exclude excess of light, when it is excessive, and to render objects visible under obscurer degrees of it, when no more can be had, the hole or aperture in the eye, through which the light enters, is so formed, as to contract or dilate itself for the purpose of admitting a greater or less number of rays at the same time. The chamber of the eye is a camera-obscura, which, when the light is too small, can enlarge its opening; when too strong, can again contract it; and that without any other assistance than that of its own exquisite machinery. It is farther also, in the human subject, to be observed, that this hole in the eye, which we call the pupil, under all its different dimensions, retains its exact circular shape. This is a structure extremely artificial. Let an artist only try to execute the same; he will find that his threads and strings must be disposed with great consideration and contrivance, to make a circle which shall continually change its diameter, yet preserve its form. This is done in the eye by an application of fibres, i. e. of strings similar, in their position and action, to what an artist could and must employ, if he had the same piece of workmanship to perform.

II. The second difficulty which has been stated, was the suiting of the same organ to the perception of objects that lie near at hand, within a few inches, we will suppose, of the eye, and of objects which are placed at a considerable distance from it, that, for example, of as many furlongs (I speak in both cases of the distance at which distinct vision can be exercised). Now this, according to the principles of optics, that is, according to the laws by which the transmission of light is regulated,

(and these laws are fixed,) could not be done without the organ itself undergoing an alteration, and receiving an adjustment, that might correspond with the exigency of the case, that is to say, with the different inclination to one another under which the rays of light reached it. Rays issuing from points placed at a small distance from the eye, and which consequently must enter the eye in a spreading or diverging order, cannot, by the same optical instrument in the same state, be brought to a point, i.e. be made to form an image, in the same place with rays proceeding from objects situated at a much greater distance, and which rays arrive at the eye in directions nearly (and physically speaking) parallel. It requires a rounder lens to do it. The point of concourse behind the lens must fall critically upon the retina, or the vision is confused; yet, other things remaining the same, this point, by the immutable properties of light, is carried farther back when the rays proceed from a near object, than when they are sent from one that is remote. A person who was using an optical instrument would manage this matter by changing, as the occasion required, his lens or his telescope; or by adjusting the distance of his glasses with his hand or his screw but how is this to be managed in the eye? What the alteration was, or in what part of the eye it took place, or by what means it was effected, (for if the known laws which govern the refraction of light be maintained, some alteration in the state of the organ there must be,) had long formed a subject of inquiry and conjecture. The change, though sufficient for the purpose, is so minute as to elude ordinary observation. Some very late discoveries, deduced from a laborious and most accurate inspection of the structure and operation of the organ, seem at length to have ascertained the mechanical alteration which the parts of the eye undergo. It is found, that by the action of certain muscles, called the straight muscles, and which action is the most advantageous that could be imagined for the purpose, -it is found, I say, that whenever the eye is directed to a near object, three changes are produced in it at the same time, all severally contributing to the adjustment required. The cornea, or outermost coat of the eye, is rendered more round and prominent: the crystalline lens underneath is pushed forward; and the axis of vision, as the depth of the eye is called, is elongated. These changes in the eye vary its power over the rays of light in such a manner and degree as to produce exactly the effect which is wanted, viz. the formation of an image upon the retina,

« ПредишнаНапред »