Графични страници
PDF файл
ePub

thesis of the sort in question is entitled to a more favourable reception, if, besides accounting for the facts previously known, it has led to the anticipation and prediction of others which experience afterwards verified." And he adds, "Such predictions and their fulfilment are indeed well calculated to strike the ignorant vulgar;" but it is strange, he says, that any considerable stress should be laid upon such a coincidence by scientific thinkers. However strange it may seem to him, there is no doubt that the most scientific thinkers, far more than the ignorant vulgar, have allowed the coincidence of results predicted by theory with fact afterwards observed, to produce the strongest effects upon their conviction; and that all the bestestablished theories have obtained their permanent place in general acceptance in virtue of such coincidences, more than of any other evidence. It was not

the ignorant vulgar alone, who were struck by the return of Halley's comet, as an evidence of the Newtonian theory. Nor was it the ignorant vulgar, who were struck with those facts which did so much strike men of science, as curiously felicitous proofs of the undulatory theory of light, the production of darkness by two luminous rays interfering in a special manner; the refraction of a single ray of light into a conical pencil; and other complex yet precise results, predicted by the theory and verified by experiment. It must, one would think, strike all persons in proportion to their thoughtfulness, that when Nature thus does our bidding, she acknowledges that we have learnt her true language. If we can predict new facts which we have not seen, as well as explain those which we have seen, it must be because our explanation is not a mere formula of observed facts, but a truth of a deeper kind. Mr. Mill says, "If the laws of the propagation of light agree with those of the vibrations of an elastic fluid in so many respects as is necessary to make the hypothesis a plausible explanation of all or most of the phenomena known at the time, it is nothing strange that they should accord with each other in one respect more." Nothing strange, if the

T

theory be true; but quite unaccountable, if it be not. If I copy a long series of letters of which the last half-dozen are concealed, and if I guess those aright, as is found to be the case when they are afterwards uncovered, this must be because I have made out the import of the inscription. To say, that because I have copied all that I could see, it is nothing strange that I should guess those which I cannot see, would be absurd, without supposing such a ground for guessing. The notion that the discovery of the laws and causes of phenomena is a loose hap-hazard sort of guessing, which gives "plausible" explanations, accidental coincidences, casual "harmonies," laws, "in some measure analogous" to the true ones, suppositions "tenable" for a time, appears to me to be a misapprehension of the whole nature of science; as it certainly is inapplicable to the case to which it is principally applied by Mr. Mill.

52. There is another kind of evidence of theories, very closely approaching to the verification of untried predictions, and to which, apparently, Mr. Mill does not attach much importance, since he has borrowed the term by which I have described it, Consilience, but has applied it in a different manner (ii. 530, 563, 590). I have spoken, in the Philosophy, of the Consilience of Inductions, as one of the Tests of Hypotheses, and have exemplified it by many instances; for example, the theory of universal gravitation, obtained by induction from the motions of the planets, was found to explain also that peculiar motion of the spheroidal earth which produces the Precession of the Equinoxes. This, I have said, was a striking and surprising coincidence which gave the theory a stamp of truth beyond the power of ingenuity to counterfeit. I may compare such occurrences to a case of interpreting an unknown character, in which two different inscriptions, deciphered by different persons, had given the same alphabet. We should,

18 B. xi. c. v. art. 11.

in such a case, believe with great confidence that the alphabet was the true one; and I will add, that I believe the history of science offers no example in which a theory supported by such consiliences, had been afterwards proved to be false.

53. Mr. Mill accepts (ii. 21) a rule of M. Comte's, that we may apply hypotheses, provided they are capable of being afterwards verified as facts. I have a much higher respect for Mr. Mill's opinion than for M. Comte's1; but I do not think that this rule will be found of any value. It appears to me to be tainted with the vice which I have already noted, of throwing the whole burthen of explanation upon the unexplained word fact-unexplained in any permanent and definite opposition to theory. As I have said, the Newtonian theory is a fact. Every true theory is a fact. Nor does the distinction become more clear by Mr. Mill's examples. "The vortices of Descartes would have been," he says, "a perfectly legitimate hypothesis, if it had been possible by any mode of explanation which we could entertain the hope of possessing, to bring the question whether such vortices exist or not, within the reach of our observing faculties." But this was possible, and was done. The free

19 I have given elsewhere (see last chapter) reasons why I cannot assign to M. Comte's Philosophie Positive any great value as a contribution to the philosophy of science. In this judgment I conceive that I am supported by the best philosophers of our time. M. Comte owes, I think, much of the notice which has been given to him to his including, as Mr. Mill does, the science of society and of human nature in his scheme, and to his boldness in dealing with these. He appears to have been received with deference as a mathematician; but Sir John Herschel has shown that a supposed astronomical

discovery of his is a mere assumption. I conceive that I have shown that his representation of the history of science is erroneous, both in its details and in its generalities. His distinction of the three stages of sciences, the theological, metaphysical, and positive, is not at all supported by the facts of scientific history. Real discoveries always involve what he calls metaphysics; and the doctrine of final causes in physiology, the main element of science which can properly be called theological, is retained at the end, as well as the beginning of the science, by all except a peculiar school.

sea.

passage of comets through the spaces in which these vortices should have been, convinced men that these vortices did not exist. In like manner Mr. Mill rejects the hypothesis of a luminiferous ether, "because it can neither be seen, heard, smelt, tasted, or touched." It is a strange complaint to make of the vehicle of light, that it cannot be heard, smelt, or tasted. Its vibrations can be seen. The fringes of shadows for instance, show its vibrations, just as the visible lines of waves near the shore show the undulations of the Whether this can be touched, that is, whether it resists motion, is hardly yet clear. I am far from saying there are not difficulties on this point, with regard to all theories which suppose a medium. But there are no more difficulties of this kind in the undulatory theory of light, than there are in Fourier's theory of heat, which M. Comte adopts as a model of scientific investigation; or in the theory of voltaic currents, about which Mr. Mill appears to have no doubt; or of electric atmospheres, which, though generally obsolete, Mr. Mill appears to favour; for though it had been said that we feel such atmospheres, no one had said that they have the other attributes of matter.

VIII. Newton's Vera Causa.-54. Mr. Mill conceives (ii. 17) that his own rule concerning hypotheses coincides with Newton's Rule, that the cause assumed must be a vera causa. But he allows that "Mr. Whewell...has had little difficulty in showing that his (Newton's) conception was neither precise nor consistent with itself." He also allows that "Mr. Whewell is clearly right in denying it to be necessary that the cause assigned should be a cause already known; else how could we ever become acquainted with new causes?" These points being agreed upon, I think that a little further consideration will lead to the conviction that Newton's Rule of philosophizing will best become a valuable guide, if we understand it as asserting that when the explanation of two or more different kinds of phenomena (as the revolutions of the planets, the fall of a stone, and the precession of the equinoxes,) lead us to the same cause, such a coincidence gives a

reality to the cause. We have, in fact, in such a case, a Consilience of Inductions.

55. When Mr. Mill condemns me (ii. 24) (using, however, expressions of civility which I gladly acknowledge,) for having recognized no mode of Induction except that of trying hypothesis after hypothesis until one is found which fits the phenomena, I must beg to remind the readers of our works, that Mr. Mill himself allows (i. 363) that the process of finding a conception which binds together observed facts "is tentative, that it consists of a succession of guesses, many being rejected until one at last occurs fit to be chosen." I must remind them also that I have given a Section upon the Tests of Hypotheses, to which I have just referred,—that I have given various methods of Induction, as the Method of Gradation, the Method of Natural Classification, the Method of Curves, the Method of Means, the Method of Least Squares, the Method of Residues: all which I have illustrated by conspicuous examples from the History of Science; besides which, I conceive that what I have said of the Ideas belonging to each science, and of the construction and explication of conceptions, will point out in each case, in what region we are to look for the Inductive Element in order to make new discoveries. I have already ventured to say, elsewhere, that the methods which I have given, are as definite and practical as any others which have been proposed, with the great additional advantage of being the methods by which all great discoveries in science have really been made.

IX. Successive Generalizations.-56. There is one feature in the construction of science which Mr. Mill notices, but to which he does not ascribe, as I conceive, its due importance: I mean, that process by which we not only ascend from particular facts to a general law, but when this is done, ascend from the first general law to others more general; and so on, proceeding to the highest point of generalization. This character of the scientific process was first clearly pointed out by Bacon, and is one of the most noticeable instances of

« ПредишнаНапред »