Графични страници
PDF файл
ePub

coincidence that the centre of the Nile delta lies at the centre of the land-surface of the earth; in other words, the shoreline along which lie the mouths of the Nile has been designedly curved so as to have its centre so placed. And so of the other relations. The very fact that the four conditions can be fulfilled simultaneously is evidence that a coincidence of the sort may result from mere accident.* Indeed the peculiarity of geographical position which really seems to have been in the thoughts of the pyramid architects, introduces yet a fifth condition which by accident could be fulfilled along with the four others.

It would seem that the builders of the pyramid were anxious to place it in latitude 30°, as closely as their means of observation permitted. Let us consider what result they achieved, and the evidence thus afforded respecting their skill and scientific attainments. In our own time, of course, the astronomer has no difficulty in determining with great exactness the position of any given latitudeparallel. But at the time when the great pyramid was built it must have been a matter of very serious difficulty to determine the position of any required latitude-parallel with a great degree of exactitude. The most obvious way of dealing with the difficulty would have been by observing the length of shadows thrown by upright posts at noon in spring and autumn. In latitude 30° north, the sun at noon in spring (or, to speak precisely, on the day of the vernal equinox) is just twice as far from the horizon as he is from the point vertically overhead; and if a pointed post were set exactly upright at true noon (supposed to occur at the moment of the vernal or autumnal equinox), the shadow of the post would be exactly half as long as a line drawn from the top of the pole to the end of the shadow. But observations based on

* Of course it may be argued that nothing in the world is the result of mere accident, and some may assert that even matters which are commonly regarded as entirely casual have been specially designed. It would not be easy to draw the precise line dividing events which all men would regard as to all intents and purposes accidental from those which some men would regard as results of special providence. But common sense draws a sufficient distinction, at least for our present purpose.

this principle would have presented many difficulties to the architects of the pyramid. The sun not being a point of light, but a globe, the shadow of a pointed rod does not end in a well-defined point. The moment of true noon, which is not the same as ordinary or civil noon, never does agree exactly with the time of the vernal or autumnal equinox, and may be removed from it by any interval of time between zero and twelve hours. And there are many other circumstances which would lead astronomers, like those who doubtless presided over the scientific preparations for building the great pyramid, to prefer a means of determining the latitude depending on another principle. The stellar heavens would afford practically unchanging indications for their purpose. The stars being all carried round the pole of the heavens, as if they were fixed points in the interior of a hollow revolving sphere, it becomes possible to determine the position of the pole of the star-sphere, even though no bright conspicuous star actually occupies that point. Any bright star close by the pole is seen to revolve in a very small circle whose centre is the pole itself. Such a star is our present so-called polestar; and, though in the days when the great pyramid was built, that star was not near the pole, another, and probably a brighter, star lay near enough to the pole* to serve as a pole-star, and to indi

*This star, called Thuban from the Arabian al-Thúban, the Dragon, is now not very bright, being rated at barely above the fourth magnitude, but it was formerly the brightest star Bayer also assigned to it the first letter of the of the constellation, as its name indicates. Greek alphabet; though this is not absolutely decisive evidence that so late as his day it retained its superiority over the second magnitude stars to which Bayer assigned the second and third Greek letters. In the year 2790 B.C., or thereabouts, the star was at its nearest to the true north pole of the heavens, the diameter of the little circle in which it then moved being considerably less than onefourth the apparent diameter of the moon. At that time the star must have seemed to all ordinary observation an absolutely fixed centre, round which all the other stars revolved. At the time when the pyramid was built this star was about sixty times farther removed from the true pole, revolving in a circle whose apparent diameter was about seven times as great as the moon's. Yet it would still be regarded as a very useful pole

cate by its circling motion the position of the actual pole of the heavens. This was at that time, and for many subsequent centuries, the leading star of the great constellation called the Dragon.

The pole of the heavens, we know, varies in position according to the latitude of the observer. At the north pole it is exactly overhead; at the equator the poles of the heavens are both on the horizon; and, as the observer travels from the equator towards the north or south pole of the earth, the corresponding pole of the heavens rises higher and higher above the horizon. In latitude 30° north, or one-third of the way from the equator to the pole, the pole of the heavens is raised one-third of the way from the horizon to the point vertically overhead; and when this is the case, the observer knows that he is in latitude 30°. The builders of the great pyramid, with the almost constantly clear skies of Egypt, may reasonably be supposed to have adopted this means of determining the true position of that thirtieth parallel on which they appear to have designed to place the great building they were about to erect.

It so happens that we have the means of forming an opinion on the question whether they used one method or the other; whether they employed the sun or the stars to guide them to the geographical position they required. In fact, were it not for this circumstance, I should have thought it worth while to discuss the qualities of either method. It will presently be seen that the discussion bears importantly on the opinion we are to form of the skill and attainments of the pyramid architects. Every celestial object is apparently raised somewhat above its true position by the refractive powers of our atmosphere, being most raised when nearest the horizon, and least when nearest the point vertically overhead. This effect is, indeed, so marked on bodies close to the horizon that if the astronomers of the pyramid times had observed the sun, moon, and stars attentively when so placed, they could not have failed to discover the peculiarity. Probably, however, though they noted the time of rising and setting of the

celestial bodies, they only made instrumental observations upon them when these bodies were high in the heavens, and so remained ignorant of the refractive powers of the air.* Now, if they had determined the position of the thirtieth parallel of latitude by observations of the noonday sun (in spring or autumn), then since, owing to refraction, they would have judged the sun to be higher than he really was, it follows that they would have supposed the latitude of any station from which they observed to be lower than it really was. For the lower the latitude the higher is the noonday sun at any given season. Thus, when really in latitude 30° they would have supposed themselves in a latitude lower than 30°, and would have travelled a little farther north to find the proper place, as they would have supposed, for erecting the great pyramid. On the other hand, if they determined the place from observations of the movements of stars near the pole of the heavens, they would make an error of a precisely opposite nature. For the higher the latitude the higher is the pole of the heavens; and refraction, therefore, which apparently raises the pole of the heavens, gives to a station the appearance of being in a higher latitude than it really is, so that the observer would consider he was in latitude 30° north when in reality somewhat south of that latitude. We have only then to enquire whether the great pyramid was set north or south of latitude 30°, to ascertain whether the pyramid architects observed the noonday sun or circumpolar stars to determine their latitude; always assuming (as we reasonably may), that those architects did propose to set the pyramid in that particular latitude, and that they were able to make very accurate observations of the apparent positions of the celestial bodies, but that they were not acquainted with the refractive effects of the atmosphere. The answer comes in no doubtful terms. The centre of the great pyramid's base lies about one mile and a third south of the thirtieth parallel of latitude; and

* Even that skilful astronomer Hipparchus, who may be justly called the father of observational astronomy, overlooked this peculiarstar, especially as there are very few conspicity, which Ptolemy would seem to have been uous stars in the neighborhood.

the first to recognise.

from this position the pole of the heavens, as raised by refraction, would appea to be very near indeed to the required position. In fact, if the pyramid had been set about half a mile still farther south the pole would have seemed just right.

Of course, such an explanation as I have here suggested appears altogether heretical to the pyramidalists. According to them the pyramid architects knew perfectly well where the true thirtieth parallel lay, and knew also all that modern science has discovered about refraction; but set the pyramid south of the true parallel and north of the position where refraction would just have made the apparent elevation of the pole correct, simply in order that the pyramid might correspond as nearly as possible to each of two conditions, whereof both could not be fulfilled at once. The pyramid would indeed, they say, have been set even more closely midway between the true and the apparent parallels of 30° north, but that the Jeezeh hill on which it is set does not afford a rock foundation any farther north. 'So very close,' says Professor Smyth, was the great pyramid placed to the northern brink of its hill, that the edges of the cliff might have broken off under the terrible pressure had not the builders banked up there most firmly the immense mounds of rubbish which came from their work, and which Strabo looked so particularly for 1,800 years ago, but could not find. Here they were, however, and still are, utilised in enabling the great pyramid to stand on the very utmost verge of its commanding hill, within the limits of the two required latitudes, as well as over the centre of the land's physical and radial formation, and at the same time on the sure and proverbially wise foundation of rock.'

The next circumstance to be noted in the position of the great pyramid (as of all the pyramids) is that the sides are carefully oriented. This, like the approximation to a particular latitude, must be regarded as an astronomical rather than a geographical relation. The accuracy with which the orientation has been effected will serve to show how far the builders had mastered the methods of astronomical observation by which orientation was to be secured.

The

problem was not so simple as might be supposed by those who are not acquainted with the way in which the cardinal points are correctly determined. By solar observations, or rather by the observations of shadows cast by vertical shafts before and after noon, the direction of the meridian, or north and south line, can theoretically be ascertained. But probably in this case, as in determining the latitude, the builders took the stars for their guide. The pole of the heavens would mark the true north; and equally the pole-star, when below or above the pole, would give the true north, but, of course, most conveniently when below the pole. Nor is it difficult to see how the builders would make use of the pole-star for this purpose. From the middle of the northern side of the intended base they would bore a slant passage tending always from the position of the pole-star at its lower meridional passage, that star at each successive return to that position serving to direct their progress; while its small range, east and west of the pole, would enable them most accurately to determine the star's true mid-point below the pole; that is, the true north. When they had thus obtained a slant tunnel pointing truly to the meridian, and had carried it down to a point nearly below the middle of the proposed square base, they could, from the middle of the base, bore vertically downwards, until by rough calculation they were near the lower end of the slant tunnel; or both tunnels could be made at the same time. Then a subterranean chamber would be opened out from the slant tunnel. The vertical boring, which need not be wider than necessary to allow a plumb-line to be suspended down it, would enable the architects to determine the point vertically below the point of suspension. The slant tunnel would give the direction of the true north, either from that point or from a point at some known small distance east or west of that point.* Thus, a line from some

*It would only be by a lucky accident, of course, that the direction of the slant tunnel's axis and that of the vertical from the selected central point would lie in the same vertical plane. The object of the tunnelling would, in fact, be to determine how far apart the vertical planes through these points lay, and the odds would be great against the result proving to be zero.

ascertained point near the mouth of the vertical boring to the mouth of the slant tunnel would lie due north and south, and serve as the required guide for the orientation of the pyramid's base. If this base extended beyond the opening of the slant tunnel, then, by continuing this tunnelling through the base tiers of the pyramid, the means would be obtained of correcting the orientation.

This, I say, would be the course naturally suggested to astronomical architects who had determined the latitude in the manner described above. It may even be described as the only very accurate method available before the telescope had been invented. So that if the accuracy of the orientation appears to be greater than could be obtained by the shadow method, the natural inference, even in the absence of corroborative evidence, would be that the stellar method, and no other, had been employed. Now, in 1779, Nouet, by refined observations, found the error of orientation measured by less than 20 minutes of arc, corresponding roughly to a displacement of the corners by about 37 inches from their true position, as supposed to be determined from the centre; or to a displacement of a southern corner by 53 inches on an east and west line from a point due south of the corresponding northern corner. This error, for a base length of 9,140 inches, would not be serious, being only one inch in about five yards (when estimated in the second way). Yet the result is not quite worthy of the praise given to it by Professor Smyth. He himself, however, by much more exact observations, with an excellent altazimuth, reduced the alleged error from 20 minutes to only 4, or to 9-40ths of its formerly supposed value. This made the total displacement of a southern corner from the true meridian through the corresponding northern corner, almost exactly one foot, or one inch in about twenty-one yards a degree of accuracy rendering it practically certain that some stellar method was used in orienting the base.

Now there is a slanting tunnel occupying precisely the position of the tunnel which should, according to this view, have been formed in order accurately to orient the pyramid's base, assuming that the time of the building of 'the pyramid

corresponded with one of the epochs wher the star Alpha Draconis was distant 3° 42' from the pole of the heavens. In other words, there is a slant tunnel directed northwards and upwards from a point deep down below the middle of the pyramid's base, and inclined 26° 17′ to the horizon, the elevation of Alpha Draconis at its lower culmination when 3° 42' from the pole. The last epoch when the star was thus placed was circiter 2160 B.C.; the epoch next before that was 3440 B.C.; and between these two we should have to choose on the hypothesis that the slant tunnel was really directed to that star when the foundations of the pyramid were laid. For the next epoch before the earlier of the two named was about 28000 B.C., and the pyramid's date cannot have been more remote than 4000 B.C.

The slant tunnel, while admirably fulfilling the requirements suggested, seems altogether unsuited for any other. Its transverse height (that is, its width in a direction perpendicular to its upper and lower faces) did not amount to quite four feet; its breadth was not quite three feet and a half. It was, therefore, not well fitted for an entrance passage to the subterranean chamber immediately under the apex of the pyramid (with which chamber it communicates in the manner suggested by the above theory). It could not have been intended to be used for observing meridian transits of the stars in order to determine sidereal time; for close circumpolar stars, by reason of their slow motion, are the least suited of all for such a purpose. As Professor Smyth says, in arguing against this suggested use of the star, no observer in his senses, in any existing observatory, when seeking to obtain the time, would observe the transit of a circumpolar star for anything else than to get the direction of the meridian to adjust his instrument by.' (The italics are his.) It is precisely such a purpose (the adjustment, however, not of an instrument, but of the entire structure of the pyramid itself), that I have suggested for this remarkable passagethis cream-white, stone-lined, long tube,' where it traverses the masonry of the pyramid, and below that dug through the solid rock to a distance of more than 350 feet.

Let us next consider the dimensions

of the square base thus carefully placed in latitude 30° north, to the best of the builders' power, with sides carefully oriented.

It seems highly probable that whatever special purpose the pyramid was intended to fulfil, a subordinate idea of the builders would have been to represent symbolically in the proportions of the building such mathematical and astronomical relations as they were acquainted with. From what we know by tradition of the men of the remote time when the pyramid was built, and what we can infer from the ideas of those who inherited, how ever remotely, the modes of thought of the earliest astronomers and mathematicians, we can well believe that they would look with superstitious reverence on special figures, proportions, numbers, and so forth. Apart from this, they may have had a quasi-scientific desire to make a lasting record of their discoveries, and of the collected knowledge of their time. It seems altogether probable, then, that the smaller unit of measurement used by the builders of the great pyramid was intended, as Professor Smyth thinks, to be equal to the 500,000,000th part of the earth's diameter, determined from their geodetical observations. It was perfectly within the power of mechanicians and mathematicians so experienced as they undoubtedly were-the pyramid attests so much to measure with considerable accuracy the length of a degree of latitude. They could not possibly (always setting aside the theory of divine inspiration) have known anything about the compression of the earth's globe, and therefore could not have intended, as Professor Smyth supposes, to have had the 500,000,000th part of the earth's polar axis, as distinguished from any other, for their unit of length. But if they made observations in or near latitude 30° north, on the supposition that the earth is a globe, their probable error would exceed the difference even between the earth's polar and equatorial diameters. Both differences are largely exceeded by the range of difference among the estimates of the actual length of the sacred cubit, supposed to have contained twenty-five of these smaller units. And, again, the length of the pyramid baseside, on which Smyth bases his own estimate of the sacred cubit, has been vari

ously estimated, the largest measure being 9,168 inches, and the lowest 9,110 inches. The fundamental theory of the pyramidalists, that the sacred cubit was exactly one 20,000,000th part of the earth's polar diameter, and that the side. of the base contained as many cubits and parts of a cubit as there are days and parts of a day in the tropical year (or year of seasons), requires that the length of the side should be 9,140 inches, lying between the limits indicated, but still so widely removed from either that it would appear very unsafe to base a theory on the supposition that the exact length is or was 9,140 inches. If the measures 9,168 inches and 9,110 inches were inferior, and several excellent measures made by practised observers ranged around the length 9,140 inches, the case would be different. But the best recent measures gave respectively 9,110 and 9,130 inches; and Smyth exclaims against the unfairness of Sir H. James in taking 9,120 as 'therefore the [probable] true length of the side of the great pyramid when perfect,' calling this 'a dishonorable shelving of the honorable older observers with their larger results.' The only other measures, besides these two, are two by Colonel Howard-Vyse, and by the French savants, giving respectively 9,168 and 9,163 44 inches. The pyramidalists consider 9,140 inches a fair mean value from these four. The natural inference, however, is, that the pyramid base is not now in a condition to be satisfactorily measured; assuredly no such reliance can be placed on the mean value 9,140 inches that, on the strength of it, we should believe what otherwise would be utterly incredible, viz. that the builders of the great pyramid knew 'both the size and shape of the earth exactly.' 'Humanly, or by human science, finding it out in that age was, of course, utterly impossible,' says Professor Smyth. But he is so confident of the average value derived from widely conflicting base measures as to assume that this value, not being humanly discoverable, was of necessity attributable to God and to his Divine inspiration.' We may agree, in fine, with Smyth, that the builders of the pyramid knew the earth to be a globe; that they took for their measure of length the sacred cubit, which, by their earth measures, they made very

and

« ПредишнаНапред »